Tag Archives: space

MAGNETARES

19 Sep

¿Qué son los magnetares? ¿Has oído hablar alguna vez de ellos?

Son extremadamente misteriosos, dentro de este cosmos fascinante ya de por sí.

Veamos como se desarrollan

Cuando una estrella muere, implosiona y se convierte en Supernova.

A veces, se forma una estrella de neutrones densa de las cenizas de esa explosión y en el proceso, algunas se convierten en magnetares con un poderoso campo magnético.

¿Pero qué son los magnetares?

Son los imanes más potentes conocidos en el universo, millones de veces más potentes que los imanes más fuertes de la Tierra.

Se originan de la agonía de las estrellas masivas, son los extraños remanentes superdensos de explosiones de supernovas.

Se trata de un tipo de estrella de neutrones alimentada con un campo magnético extremadamente fuerte.

Son antiguos núcleos de estrellas mucho mayores que en su día explotaron.

Se afirma que hay estrellas masivas que pierden peso antes de explotar como Supernovas y pierden el 90% de su masa.

Así que en vez de implosionar y convertirse en agujeros negros pasan a ser estrellas de neutrones con mucha fuerza magnética.

Los magnetares son una forma inusual y muy exótica de estrella de neutrones.

Se trata de objetos astronómicos increíblemente densos, sorprendentemente pequeños y, como su propio nombre lo sugiere, poseedores de una atracción magnética indescriptible.

¿Cuál es su esperanza de vida?

Tienen una escasa esperanza de vida y para que nazcan, se deben cumplir una serie de factores.

De modo que todos los Magnetares que vemos o bien son muy jóvenes, o bien no les queda mucho tiempo de vida, pues rozan el límite de inestabilidad gravitatoria que las consume “rápidamente” (en términos astronómicos).

Veamos sus características

Las estrellas de neutrones se caracterizan por rotar a gran velocidad y tener una masa un poco mayor que la del Sol pero concentrada en un radio de entre 10 y 20 kilómetros aproximadamente.

Su edad se determina a partir de la velocidad de rotación ya que a medida que evolucionan van girando más lentamente.

Si un viajero espacial se desviara y pasara a menos de mil kilómetros de uno de estos objetos masivos las consecuencias serían terroríficas. Su campo magnético podría desordenar los átomos de la carne humana y sus fuerzas gravitatorias destrozarían a una persona.

Las superficies de los magnetares liberan grandes cantidades de rayos gamma cuando atraviesan una etapa de ajuste repentino, conocida como un terremoto estelar (starquake), consecuencia de las enormes tensiones que tienen lugar en sus cortezas.

¿A qué distancia tendría que estar un magnetar para crear caos en el sistema solar?

Hay quien sostiene que la erupción de un magnetar situado a 10 años luz podría producir un cataclismo cósmico y destruir la capa de ozono y causar extinciones masivas.

Hay tan pocas probabilidades que es prácticamente imposible que eso suceda. No sería diferente del paso de una estrella por el sistema solar y se sabe que ninguna estrella lo ha atravesado desde su formación.

Aunque los científicos no tienen la certeza del porqué, los magnetares son una forma especialmente magnética de estrella de neutrones, razón por la que también se les conoce como magnetoestrella.

Sus campos magnéticos equivalen a aproximadamente mil billones de veces el de la Tierra.

Cuando su fuerza magnética es increíblemente potente deforma la corteza del magnetar creando fenómenos sísmicos en su superficie conocidos, como hemos comentado, por el nombre de terremotos estelares.

La corteza se quiebra por la presión y el campo magnético adquiere un estado energético más débil, y cuando ocurre, una bola de fuego sale desprendida de la estrella.

Estos terremotos causan los intensos fogonazos que detectamos. Cuando un magnetar produce uno de esos fogonazos es más brillante que todas las estrellas de la galaxia durante las pocas décimas de segundo que dura.

_____________

What are magnetars? Have you ever heard of them?
They are extremely mysterious, in this fascinating cosmos.

Let’s see how they develop

When a star dies, it implodes and becomes Supernova.
Sometimes a dense neutron star forms from the ashes of that explosion and in the process, some become magnetars with a powerful magnetic field.

But what are magnetars?

They are the most powerful magnets known in the universe, millions of times more powerful than the strongest magnets on Earth.
They originate from the agony of massive stars, they are the strange superdensive remnants of supernova explosions.
It is a type of neutron star powered with an extremely strong magnetic field.
They are ancient nuclei of much larger stars that in their day exploded.

It is claimed that there are massive stars that lose weight before they explode as Supernovae and lose 90% of their mass.
So instead of imploding and turning into black holes they become neutron stars with a lot of magnetic force.

Magnetars are an unusual and very exotic form of neutron star.
These are incredibly dense astronomical objects, surprisingly small and, as its name suggests, possessing an indescribable magnetic attraction.

What is your life expectancy?

They have a short life expectancy and to be born, a number of factors must be fulfilled.
So all the magnetars that we see are either very young, or they do not have much time to live, because they touch the limit of gravitational instability that consumes them “quickly” (in astronomical terms).

Let’s see their characteristics

Neutron stars are characterized by rotating at high speed and having a mass a little larger than the Sun but concentrated in a radius of about 10 to 20 kilometers.
Their age is determined from the speed of rotation since as they evolve, they spin more slowly.

If a space traveler were to deviate and pass within a thousand kilometers of one of these massive objects the consequences would be terrifying. Its magnetic field could disrupt the atoms of human flesh and its gravitational forces would destroy a person.

The magnetar surfaces release large amounts of gamma rays as they pass through a sudden tuning stage, known as a starquake, as a result of the enormous stresses that occur in their shells.

How far would a magnetar have to be to create chaos in the solar system?

Some argue that the eruption of a magnetar located 10 light years could produce a cosmic cataclysm and destroy the ozone layer and cause massive extinctions.
There is so little chance that it is practically impossible for that to happen. It would not be different from the passage of a star through the solar system and it is known that no star has crossed it since its formation.

Although scientists are not sure why, magnetars are a particularly magnetic form of neutron star, which is why they are also known as magnetoestrella.
Its magnetic fields are equivalent to approximately one billion trillion times that of Earth.

When its magnetic force is incredibly powerful it deforms the crust of the magnetar creating seismic phenomena on its surface known, as we have said, by the name of stellar earthquakes.

The crust breaks by the pressure and the magnetic field acquires a weaker energy state, and when it occurs, a ball of fire comes off of the star.
These earthquakes cause the intense flashes we detect. When a magnetar produces one of those flashes it is brighter than all the stars in the galaxy during the few tenths of a second that lasts.

 

 

Advertisements

HOW IS A HURRICANE FORMED? / ¿CÓMO SE FORMA UN HURACÁN?

15 Sep

Los efectos devastadores que están produciendo los huracanes en estos momentos nos hacen replantearnos la debilidad del Ser Humano ante la Fuerza imparable de la Naturaleza.

Vamos a analizar desde Hanan-Pacha en que consiste un huracán y cómo se forman.

Los huracanes son las tormentas más grandes y violentas de la tierra, desconocemos cuál ha sido el huracán más impactante, ya que el impacto no depende tanto de su rapidez y en cada lugar por el que pasan su intensidad en el medio es distinta.

Científicamente se les denomina “Ciclón Tropical” y este término engloba el resto de denominaciones como: tifones, huracanes o ciclones.

Estos fenómenos surgen en zonas de fuertes depresiones tropicales y son capaces de liberar una potencia de destrucción diez veces superior a una bomba nuclear.

Estos ciclones tropicales se forman sobre el agua cálida de los océanos y se ayudan de los vientos, cuando el aire caliente sube desde la superficie del océano, debajo de él se forma una zona de baja presión.

Son como motores gigantes que usan el aire cálido y húmedo como combustible. Esta es la razón por la que se forman sólo sobre océanos de agua templada, cerca del Ecuador.

El aire caliente sube y el frio cae. En las regiones ecuatorianas los océanos son cálidos, por lo que el aire que está sobre el agua también es cálido.

Como el aire se mueve hacia arriba y se aleja de la superficie, queda menos aire cerca de la superficie. El aire cálido se eleva causando un área de menor presión de aire cerca del océano.

El aire con mayor presión que está en las áreas circundantes llena el área de baja presión. Luego, este “nuevo” aire se torna cálido y también se eleva. En la medida en que el aire cálido continúa subiendo, el aire circundante gira para ocupar su lugar. Cuando el aire cálido y húmedo se eleva y se enfría, el agua que va subiendo en forma de vapor forma nubes. Todo el sistema de nubes y aire gira y crece, alimentado por el calor del océano y el agua que se evapora de la superficie.

Cuantas más nubes se forman y más aire cálido asciende, las nubes se juntan y comienzan a girar. También gira el agua debajo de ellas. De ahí el nombre “ciclón tropical”, ya que los giros imitan la actividad de los tornados en tierra.

En el Hemisferio Norte, los huracanes dan vuelta en el sentido contrario a las agujas del reloj, y en el Hemisferio Sur en la dirección de las mismas.

Por lo general se debilitan cuando tocan tierra, porque ya no se pueden «alimentar» de la energía proveniente de los océanos templados, aunque no siempre pasa eso y avanzan tierra adentro causando mucho daño por la lluvia y el viento antes de desaparecer por completo.

Cuando los vientos en la tormenta giratoria alcanzan los 60 km/h, la tormenta se denomina “tormenta tropical”. Y cuando alcanzan 120 km/h, se consideran oficialmente “ciclón tropical”, o huracán.

Los huracanes tienen diferentes clasificaciones de acuerdo a la velocidad de los vientos. Por ejemplo, un huracán de categoría 3 tiene vientos de 179 a 210 km/h, mientras que en uno de categoría 1 los vientos serán de entre 120 a 153 km/h.

La Administración Nacional Oceánica y Atmosférica (NOAA, siglas en inglés) ha trabajado con la NASA para colocar satélites sobre la tierra para observar la formación de tormentas. Estos satélites también rastrean el progreso de un huracán. El control es la mejor forma para advertir a la gente sobre el inminente peligro de un huracán.

________

The devastating effects that hurricanes are producing at this moment make us rethink the weakness of the Human Being before the unstoppable Force of Nature.

We will analyze from Hanan-Pacha what a hurricane consists of and how they form.

Hurricanes are the largest and most violent storms on earth, we do not know what hurricane has been the most shocking, since the impact does not depend so much on their speed and in each place that they pass their intensity in the middle is different.

Scientifically they are called “Tropical Cyclone” and this term includes the rest of denominations like: typhoons, hurricanes or cyclones.
These phenomena arise in areas of strong tropical depressions and are capable of releasing a destructive power ten times greater than a nuclear bomb.

These tropical cyclones are formed on the warm water of the oceans and are aided by the winds, when the hot air rises from the surface of the ocean, underneath it forms a zone of low pressure.

They are like giant engines that use warm, moist air for fuel. This is why they form only on temperate water oceans near the equator.
The hot air rises and the cold falls. In the Ecuadorian regions the oceans are warm, so the air on the water is also warm.
As air moves up and away from the surface, less air remains near the surface. Warm air rises causing an area of ​​lower air pressure near the ocean.

The higher pressure air in the surrounding areas fills the low pressure area. Then this “new” air becomes warm and also rises. As warm air continues to rise, the surrounding air rotates to take its place. When the warm, moist air rises and cools, the water that goes up in the form of vapor forms clouds. The whole system of clouds and air rotates and grows, fed by the heat of the ocean and the water that evaporates from the surface.

The more clouds form and the more warm air rises, the clouds gather and begin to rotate. It also rotates the water below them. Hence the name “tropical cyclone”, since the twists mimic the activity of tornados on land.
In the Northern Hemisphere, hurricanes turn counterclockwise, and in the Southern Hemisphere in the direction of the same.

They usually weaken when they touch the ground, because they can no longer “feed” on the energy from the temperate oceans, although this does not always happen and they go inland causing much damage from rain and wind before disappearing altogether.
When the winds in the rotating storm reach 60 km / h, the storm is called a “tropical storm.” And when they reach 120 km / h, they are officially considered a “tropical cyclone” or hurricane.

Hurricanes have different classifications according to the speed of the winds. For example, a category 3 hurricane has winds of 179 to 210 km / h, while in a category 1 hurricane winds will be between 120 to 153 km/h

The National Oceanic and Atmospheric Administration (NOAA) has worked with NASA to place satellites on the ground to observe the formation of storms. These satellites also track the progress of a hurricane. Control is the best way to warn people about the imminent danger of a hurricane.

 

NEGATIVE RECORD AND COUNTDOWN / RECORD NEGATIVO Y CUENTA ATRÁS

3 Aug

Ya han saltado las alarmas, a partir de hoy nuestro bello planeta tendrá que realizar un sobreesfuerzo para alimentarnos.

Todo lo que consumamos a partir de ahora y hasta fin de año 2017, es más de lo que el planeta puede generar de una manera natural.

¿Cómo hemos llegado a esta situación? Debido a la sobreexplotación.

Cultivamos más de lo necesario, talamos más de lo necesario, pescamos más de lo necesario… y emitimos más dióxido de carbono del que los árboles pueden absorber.

 

Esto no sucedía décadas atrás, en 1969 el mundo consumía al mismo ritmo del que la tierra producía, pero nuestra sobreexplotación ha provocado que en este año 2017 la capacidad que tiene el planta para regenerarse de forma sostenible termine.

Este record negativo, se calcula comparando nuestra huella ecológica ( consumo total anual) y la biocapacidad del planeta ( la capacidad que dispone el planeta de regenerarse en un año).

Al sobreexplotar el planeta, provocamos deforestación, sequía, erosión de suelo, pérdida de biodiversidad…

 

Si tuviéramos una dieta menos proteica, el ‘Día’ se postergaría 31 jornadas, no 150 como es el caso ahora. Un tercio de la comida producida en el mundo para consumo humano (1.300 millones de toneladas anuales) se malgasta, cuando representa un 9% de la huella ecológica mundial.

Otros ámbitos que determinan la huella ecológica son la manera en que construimos y gestionamos nuestras ciudades (transporte público, uso de sistemas de calefacción o aire acondicionado) y la cantidad de población.

Si una de cada dos familias tuviera un hijo menos de los que tiene actualmente, en 2050 habría mil millones de personas menos de las que se esperan, lo que retrasaría el ‘Día’ 30 jornadas.

De momento seguimos consumiendo lo equivalente a la producción de 1,7 planetas.

Pero no disponemos de 1,7 planetas, ni de dos, disponemos de un planeta, nuestro hogar, llamado “Tierra” el cual estamos destruyendo.

Se puede invertir el proceso, y depende de cada uno de nosotros.

En nuestra mano está, es nuestra responsabilidad.

______

We are already alerted, from today our beautiful planet will have to make an effort to feed us.

Everything we consume from now until the end of 2017, is more than the planet can generate in a natural way.

How did we get to this situation? Due to overexploitation.
We grow more than necessary, we cut more than necessary, we fish more than necessary … and emit more carbon dioxide than the trees can absorb.

This did not happen decades ago, in 1969 the world consumed at the same rate as the land produced, but our overexploitation has caused that in 2017 the plant’s ability to regenerate sustainably ends.

This negative record is calculated by comparing our ecological footprint (annual total consumption) and the planet’s biocapacity (the planet’s ability to regenerate in a year).

By overexploiting the planet, we cause deforestation, drought, soil erosion, loss of biodiversity …

If we had a diet less protein, the ‘Day’ would be postponed 31 days, not 150 as is the case now. One third of the world’s food produced for human consumption (1.3 billion tons per year) is wasted, when it represents 9% of the world’s ecological footprint.

Other areas that determine the ecological footprint are the way we build and manage our cities (public transport, use of heating systems or air conditioning) and the amount of population.

If one in every two families had a child less than it currently has, by 2050 there would be a billion people less than expected, which would delay the ‘Day’ 30 days.

At the moment we continue to consume the equivalent of the production of 1.7 planets.
But we do not have 1.7 planets, or two, we have a planet, our home, called “Earth” which we are destroying.

You can reverse the process, and it depends on each one of us.
In our hand it is our responsibility.

 

ICE CANYON IN GREENLAND / CAÑÓN DEL HIELO EN GROENLANDIA

1 Aug

 

El Gran Cañón de Groenlandia, es un cañón que fue descubierto debajo de la capa de hielo de Groenlandia.

Oculto bajo el hielo, Groenlandia alberga un impresionante cañón de al menos 750 kilómetros de longitud que en algunas zonas alcanza una profundidad de 800 metros. afirman que se asemeja en algunas áreas al famosísimo Gran Cañón del Colorado, en el estado Arizona (EEUU).

El cañón es probable que haya sido creado por el flujo de agua basal del interior capa de hielo.

Es el cañón más grande descubierto en la tierra hasta la fecha, pero no el más profundo. Se estima que tenga al menos 4 millones de años.

Oculto durante toda la historia de los seres humanos, Utilizando datos proporcionados por medio de radares de la Operación IceBridge de la NASA, científicos descubrieron que el cañón ocupa desde cerca del centro de la isla en dirección norte hasta el fiordo del glaciar Petermann.

Se cree que este inmenso rasgo del paisaje es anterior a la capa de hielo que ha cubierto a Groenlandia durante los últimos millones de años.
Los científicos usaron datos proporcionados por radares sobre miles de kilómetros observados; dichos datos fueron recolectados por la NASA, que contrató investigadores del Reino Unido y de Alemania durante varias décadas, con el fin de descifrar el paisaje que yace debajo de la capa de hielo de Groenlandia.

Según sus cálculos, el gran cañón se extiende desde el centro de la isla hasta el extremo norte, donde hay un profundo fiordo que conecta con el océano Ártico.

Su descubrimiento ha sido posible gracias a la utilización de un radar capaz de recabar datos bajo el hielo. Los científicos creen que el cañón se formó antes de que un manto de hielo cubriera el territorio que hoy es Groenlandia.

Uno de los instrumentos científicos de dicha operación, el Radar de Sonda Multicanal Coherente de Profundidad, puede “ver” a través de las vastas capas de hielo para medir su espesor y la forma del lecho de roca que se encuentra debajo.

 

El hallazgo de este impresionante cañón ayudará a entender por qué en Groenlandia hay pocos lagos bajo el manto helado, a diferencia de lo que han encontrado en la Antártida.

 

Creen que el cañón desempeñó un papel importante a la hora de transportar el agua derretida de los glaciares hasta el océano y que constituía uno de los principales sistemas fluviales de Groenlandia antes de que se formara la capa de hielo. Y esto, sugieren, podría explicar por qué el agua derretida bajo la capa de hielo no se acumula en lagos.

A ciertas frecuencias, las ondas de radio pueden viajar a través del hielo y rebotar desde el lecho de roca que está debajo. El tiempo que tardaban las ondas de radio en rebotar ayudó a los investigadores a determinar la profundidad del cañón. Cuánto más tardaban, más profundo era el lecho de roca.

Los investigadores creen que el cañón desempeña un importante papel en el transporte de agua de fusión de la nieve sub-glaciar desde el interior de Groenlandia hasta el borde de la capa de hielo que llega al océano. La evidencia sugiere que antes de la presencia de la capa de hielo, hace 4 millones de años, el agua fluía en el cañón desde el interior hacia la costa y era un importante sistema fluvial.

En la actualidad, el cañón es un lugar de investigación para establecer los efectos del cambio climático en el planeta, y al mismo tiempo se realizan tours o recorridos turísticos para quienes disfrutan de la naturaleza.

______

The Grand Canyon of Greenland is a canyon that was discovered beneath the ice sheet of Greenland.
Hidden under ice, Greenland is home to an impressive canyon at least 750 kilometers long, which in some areas reaches a depth of 800 meters. Claim that it resembles in some areas the famous Grand Canyon of Colorado, in Arizona state (USA).

The barrel is likely to have been created by the basal water flow of the inner layer of ice.
It is the largest canyon discovered on earth to date, but not the deepest. It is estimated to be at least 4 million years old.

Hidden Throughout the History of Humans, Using data provided by radars from NASA’s IceBridge Operation, scientists discovered that the canyon ran from near the center of the island in a northerly direction to the fjord of the Petermann Glacier.
It is believed that this immense feature of the landscape predates the ice sheet that has covered Greenland for the last million years.

The scientists used data provided by radars over thousands of kilometers observed; Such data were collected by NASA, which hired researchers from the United Kingdom and Germany for several decades, in order to decipher the landscape lying beneath the ice sheet of Greenland.

According to his calculations, the Grand Canyon extends from the center of the island to the far north, where there is a deep fjord that connects with the Arctic Ocean.
Its discovery has been possible thanks to the use of a radar capable of collecting data under the ice. Scientists believe the canyon was formed before an ice sheet covered the territory that is now Greenland.

One of the scientific instruments of this operation, the Multichannel Depth Coherent Probe Radar, can “see” through the vast layers of ice to measure its thickness and the shape of the bedrock beneath.

 

Finding this impressive canyon will help understand why in Greenland there are few lakes under the icy mantle, unlike what they have found in Antarctica.

They believe that the canyon played an important role in transporting the melted water from the glaciers to the ocean and that it was one of Greenland’s major river systems before the ice sheet formed. And this, they suggest, could explain why water melted under the ice sheet does not accumulate in lakes.

At certain frequencies, radio waves can travel through the ice and rebound from the bedrock below. The time it took for radio waves to bounce helped researchers investigate the depth of the canyon. The longer they were, the deeper the rock bed.

Researchers believe the canyon plays an important role in transporting melting water from sub-glacier snow from the interior of Greenland to the edge of the ice sheet that reaches the ocean. Evidence suggests that before the presence of the ice sheet, 4 million years ago, water flowed from the inland to the coast and was an important river system.

At present, the canyon is a place of investigation to establish the effects of climate change on the planet, and at the same time tours or tours are made for those who enjoy nature.

THE BACTRIAN CAMEL / EL CAMELLO BACTRIANO

24 Jul

 

EL CAMELLO BACTRIANO

 El Camello Bactriano posee dos jorobas y no una, como el dromedario. Es una especie de camello que ha sido utilizado como animal de carga y transporte en Asia desde hace más de 2,000 años. Incluso fue elemento importantísimo durante la época de la Ruta de la Seda.

Estos curiosos acúmulos de grasa, que aparentemente no son más que un estorbo, resultan muy útiles cuando el camello no dispone de agua y alimento suficiente.

De pelaje espeso y largo en invierno, en verano se le cae a jirones. Contrariamente al dromedario, soporta a la perfección los climas fríos, de ahí que habite las áreas montañosas de Asia central. También se le puede ver en zonas de Mongolia e Irán, donde es muy apreciado como animal doméstico.

Se trata del mamífero más grande de su hábitat natural, con una altura media de 230 centímetros de las jorobas a las patas y un peso que oscila entre 300 y 1,000 kilogramos. El macho es significativamente más grande y pesado que la hembra.

De los camélidos del Viejo Mundo, sólo esta especie, el Camello Bactriano, sobrevive actualmente en su estado natural.

Mamíferos excepcionalmente resistentes, en invierno son capaces de pasar entre cinco y ocho días sin beber (incluso cuatro sin comer).

Es uno de los mamíferos mejor adaptados a climas extremos. Soportan los cambios de temperatura tan extremos del desierto,  que puede llegar a variar  entre 60-70 Cº en la misma región.

El Camello Bactriano o camello asiático es una de las dos especies de la familia que aún se pueden encontrar en el Viejo Mundo.

En el año 2004 quedaban aproximadamente 600 individuos en China y 350 en Mongolia, con continua disminución de su número.

El pelaje que cubre su cuerpo es largo y de color marrón oscuro o amarillento. Largos mechones de pelo conforman una melena, y en el cuello y la zona del pecho se extiende una especie de barba cuyo pelaje crece hasta los 25 centímetros de largo. Después del invierno todo el “abrigo” es despojado del camello, que queda con un pelaje más corto y en ocasiones con zonas disparejas entre sí.

Las hembras tienen el celo durante los primeros meses del año, si bien transcurre más de un año hasta que da a luz a una cría, que nace totalmente desvalida y requiere de continuos cuidados durante los primeros días.

Tiene un rostro largo y en él, un labio superior partido, que junto con el inferior proporciona protección contra los fuertes vientos y las tormentas de arena. Sus cejas son espesas y tiene 2 filas de pestañas que también proporcionan protección contra la arena y el viento. La nariz es hermética para evitar la entrada del polvo.

El pelo de los ejemplares salvajes suele es fino, largo, espeso y lanoso, especialmente en cuello, jorobas y patas anteriores. El color es pardo oscuro llegando a casi negro en algunas zonas. Esto le permite defenderse tanto del sol implacable de las estepas y desiertos rocosos de Asia central como de las bajas temperaturas.

Mientras los machos suelen ser solitarios, las hembras van en pequeños grupos familiares de entre 6 y 30 individuos.

Su alimentación se basa en hierbas y raíces.

Posee patas duras con 2 dedos que permiten cruzar cómodamente los desiertos rocosos y caminar sobre la nieve o la arena. Sus jorobas almacenan grandes cantidades de grasa necesarias cuando se encuentra en época de escasez de alimentos.

El camello bactriano se distribuye en Asia y habita las regiones áridas. En invierno se encuentra a lo largo de los ríos de la estepa de Siberia y en la primavera se dispersa. Puede vivir en montañas, en llanuras pedregosas y en desiertos de dunas de arena a temperaturas extremas: mientras que en invierno el termómetro marca -40 grados centígrados, en verano marca 40 grados Celsius.

Es una especie migratoria; su distribución está vinculada a la disponibilidad de agua. Es activo durante el día y se encuentra solo o en pequeños grupos de 30 camellos, más o menos.

Habitualmente, el camello acude a ríos después de la lluvia o al pie de las montañas junto con otros camellos bactrianos. En las montañas todos pueden obtener agua tanto en verano como en invierno. Además, tiene la capacidad de sobrevivir con sus propias reservas de agua durante largos períodos de tiempo de escasez.

Es polígamo y la madurez sexual se alcanza entre los 3 y los 5 años de edad. La hembra da a luz cada 2 años. Usualmente el apareamiento ocurre en otoño y durante ese tiempo los machos se comportan de modo violento.

Ya preñada, le hembra espera 3 meses para que nazcan sus crías a partir de marzo. El pequeño camello es precoz y puede caminar unas pocas horas después de su nacimiento. Durante 3 a 5 años, permanece con la madre hasta que alcanza la edad reproductiva.

La población es objetivo de caza, aunque principalmente los cazan porque compiten con los camellos domésticos y el ganado por el agua y los pastos, también los cazan para la supervivencia y por deporte.

De hecho, según los datos, la subpoblación de Mongolia se sabe que ha disminuido en un 46% desde 1985. Si le añadimos el aumento de la caza y la depredación por parte de los lobos, se calcula que entre 25 y 30 animales se pierden anualmente (un aumento sustancial de la tasa de mortalidad).

La Lista Roja de la Unión Internacional para la Conservación de la Naturaleza lo clasifica como especie “En Peligro Crítico de Extinción”.

En 1982 se creó una reserva en Mongolia, y en el 2000 se hizo lo propio en China, pero aún queda mucho trabajo, incluida la apertura de una segunda reserva natural en China.

También está programada la cría en cautividad en Mongolia a través de la Fundación para la Protección del Camello Salvaje (Wild Camel Protection Foundation). Esta es una urgente prioridad de conservación, ya que además de estar la especie en peligro crítico, actualmente solo se encuentran 15 camellos salvajes en cautiverio, y si pasara lo peor, sería muy difícil salvar a la especie. Además hay que tener en cuenta que las hembras solo crían una vez cada dos años, con lo que la recuperación es aún más lenta.

El camello bactriano o camello salvaje se enfrenta a una reducción del tamaño de su población de al menos el 84% en las próximas tres generaciones (estimado en el plazo de 45 a 50 años).

En 1986 se clasificó como vulnerable, en 1996 se le consideró en peligro, y en 2002 se le consideró en peligro crítico.

___________

THE BACTRIAN CAMEL

The Bactrian Camel has two humps and not one, like the dromedary. It is a kind of camel that has been used as an animal of cargo and transport in Asia for more than 2,000 years. It was even an important element during the time of the Silk Road.

These curious accumulations of fat, which are apparently nothing more than a hindrance, are very useful when the camel does not have enough water and food.

With thick fur and long in winter, in summer he falls into tatters. Unlike the dromedary, it perfectly supports cold climates, hence inhabiting the mountainous areas of central Asia. It can also be seen in areas of Mongolia and Iran, where it is much appreciated as a domestic animal.
It is the largest mammal in its natural habitat, with an average height of 230 centimeters from the humps to the legs and a weight ranging from 300 to 1,000 kilograms. The male is significantly larger and heavier than the female.

Of the Old World camelids, only this species, the Bactrian Camel, currently survives in its natural state.

Exceptionally resistant mammals, in winter they are able to spend between five and eight days without drinking (even four without eating).
It is one of the mammals best adapted to extreme climates. They withstand extreme temperature changes in the desert, which can vary between 60-70 Cº in the same region.
The Bactrian Camel or Asian camel is one of the two species of the family that can still be found in the Old World.
In 2004 there were approximately 600 individuals in China and 350 in Mongolia, with a steady decline in numbers.

The coat that covers your body is long and dark brown or yellowish. Long tufts of hair make up a mane, and on the neck and chest area a beard is spread whose coat grows up to 25 centimeters long. After the winter the whole “coat” is stripped of the camel, which is left with a shorter coat and sometimes with uneven areas.

The females have the zeal during the first months of the year, although it takes more than a year until they give birth to a baby, who is born totally helpless and requires continuous care during the first few days.

It has a long face and in it, a split upper lip, which along with the lower provides protection against strong winds and sandstorms. His eyebrows are thick and have 2 rows of eyelashes that also provide protection against sand and wind. The nose is airtight to prevent dust from entering.

The hair of the wild specimens is usually thin, long, thick and woolly, especially on the neck, humps and forelegs. The color is dark brown reaching almost black in some areas. This allows him to defend himself as much from the implacable sun of the steppes and rocky deserts of Central Asia as from the low temperatures.

While males are usually solitary, females go in small family groups of 6 to 30 individuals.

Her food is based on herbs and roots.

It has hard legs with 2 fingers that allow you to comfortably cross the rocky deserts and walk on snow or sand. Their humps store large amounts of fat when it is in a time of food shortage.
The Bactrian camel is distributed in Asia and inhabits the arid regions.

In winter it is found along the rivers of the Siberian steppe and in the spring it disperses. You can live in mountains, in rocky plains and deserts of sand dunes at extreme temperatures: while in winter the thermometer marks -40 degrees Celsius, in summer marks 40 degrees Celsius.

It is a migratory species; Its distribution is linked to the availability of water. It is active during the day and is found alone or in small groups of 30 camels, more or less.

Usually the camel goes to rivers after the rain or at the foot of the mountains along with other Bactrian camels. In the mountains, everyone can get water both in summer and in winter.

In addition, it has the ability to survive with its own water reserves for long periods of shortage.
It is polygamous and sexual maturity is reached between 3 and 5 years of age. The female gives birth every 2 years. Usually mating occurs in autumn and during that time males behave violently.

Already pregnant, the female waits 3 months for their offspring to be born from March. The small camel is precocious and can walk a few hours after its birth. For 3 to 5 years, stay with the mother until she reaches reproductive age.

The population is hunting, although they mainly hunt them because they compete with the domestic camels and the cattle for the water and the grasses, also they hunt them for the survival and by sport.

In fact, according to the data, the subpopulation of Mongolia is known to have declined by 46% since 1985. If we add the increase in hunting and predation by wolves, it is estimated that between 25 and 30 animals are lost annually (a substantial increase in mortality rate).

The Red List of the International Union for the Conservation of Nature classifies it as a “Critically Endangered Species” species. In 1982, a reserve was created in Mongolia, and in 2000 the same was done in China, but much work remains , Including the opening of a second nature reserve in China.

Captive breeding in Mongolia is also planned through the Wild Camel Protection Foundation. This is an urgent priority of conservation, since in addition to being the species in critical danger, currently only 15 wild camels are in captivity, and if the worst happens, it would be very difficult to save the species. In addition, it should be noted that females only breed once every two years, so the recovery is even slower.

The Bactrian camel or wild camel is facing a population size reduction of at least 84% in the next three generations (estimated over 45 to 50 years). In 1986 he was classified as vulnerable, in 1996 he was considered in danger, and in 2002 he was considered in critical danger.

ROLLER CLOUDS / NUBES RODILLO

13 Jul

 

¿Conoces las nubes rodillo?

Es una de las nubes más exóticas que se forman en la Tierra, cuyo máximo exponente es la “Morning Glory” que a veces aparece en el norte de Australia, la formación nubosa más grande del mundo.

A veces la tormenta viene acompañada de una nube en forma de rodillo. El aire frío se precipita de una corriente descendente y levanta el aire caliente en la parte frontal de la tormenta hasta el nivel de condensación.

Es un espectáculo fascinante y amenazante mientras se acerca a gran velocidad.

Son formaciones poco comunes y tienden a verse en zonas costeras ya que la brisa marina, junto a la presencia de una tormenta, ayuda a su creación. Pero también se forman en zonas de interior cuando columnas de aire dentro de una tormenta descienden fuerte velocidad. Y se llama nube rodillo porque efectivamente gira sobre sí misma, de forma independiente a otras nubes alrededor.

Este tipo de nubes pertenece al género de las nubes Arcus y son formaciones poco comunes que tienden a verse en zonas costeras. Por lo general, este tipo de nubes se generan junto con tormentas (también pueden aparecer en su ausencia), la brisa del mar y los frentes fríos.

Normalmente se forman en áreas con fuertes inversiones térmicas, lo que suele ocurrir durante la primavera por ejemplo en las grandes llanuras americanas

Este tipo de nubes son similares a la nubes Morning Glory que se producen entre los meses de septiembre a octubre al sur del Golfo de Carpentaria, en la parte norte de Australia y que puede alcanzar hasta 1000 km de largo, entre 1 y 2 km de altura y velocidades de 60 km/h. Suelen aparecer durante inversiones bien definidas con suficiente humedad para formar la nube y normalmente ocurren en la madrugada, de ahí su apodo.

Pueden formarse cerca de frentes fríos, una corriente de aire descendente de un frente tormentoso en avance puede provocar que el aire cálido y húmedo se eleve, enfriándose por debajo de su punto de rocío, y por tanto, formando una nube.

Cuando esto sucede uniformemente a lo largo de un frente extenso, puede formarse una nube rodillo.

Pueden tener aire en circulación por todo el alargado eje horizontal de la nube.

No se han dado indicios de que una este tipo de nubes se pueda mudar en un tornado.

________________

Do you know the roller clouds?

It is one of the most exotic clouds that form on Earth, whose maximum exponent is the “Morning Glory” that sometimes appears in the north of Australia, the largest cloud formation in the world.

Sometimes the storm is accompanied by a cloud in the form of a roller. Cold air rushes from a downward current and lifts hot air in the front of the storm to the condensation level.
It is a fascinating and threatening spectacle as it approaches at great speed.

They are rare formations and tend to be seen in coastal areas as the sea breeze, along with the presence of a storm, helps their creation. But they also form in areas of interior when air columns within a storm descend strong speed. And it is called a roller cloud because it effectively rotates on itself, independently to other clouds around.

This type of clouds belongs to the Arcus cloud genus and are rare formations that tend to be seen in coastal areas. Typically, these types of clouds are generated along with storms (also may appear in their absence), sea breeze and cold fronts.
They are usually formed in areas with strong thermal inversions, which usually occurs during spring, for example in the great American plains.

This type of clouds are similar to the Morning Glory clouds that occur between the months of September to October south of the Gulf of Carpentaria in the northern part of Australia and can reach up to 1000 km long, between 1 and 2 km in height And speeds of 60 km / h. They usually appear during well defined investments with sufficient humidity to form the cloud and usually occur at dawn, hence its nickname.

They may form near cold fronts, a downward air stream from a forward stormy front can cause warm, moist air to rise, cooling below its dew point, and thereby forming a cloud.

When this happens evenly along an extended front, a roller cloud may form.
Air can circulate along the elongated horizontal axis of the cloud.
There are no indications that such clouds can be moved in a tornado.

 

 

STARS OF ANOTHER GALAXY / ESTRELLAS DE OTRA GALAXIA

11 Jul

ESTRELLAS DE OTRA GALAXIA

Las estrellas siempre están en movimiento constante en distintas direcciones y en diversos ángulos, por lo tanto es una ilusión que el cielo nos parezca estático. Si acelerásemos el paso del tiempo podríamos ver como se desarrolla este movimiento, donde las estrellas desaparecen, otras se hacen visibles y las demás cambian su posición completamente, pero no vivimos en el mismo tiempo y sólo en un instante cósmico y por esta razón no apreciamos ese movimiento.

Las estrellas que viajan con suficiente rapidez pueden huir de su entorno, ya que las galaxias tienen asociada una velocidad de escape.

Allá donde se encuentre la gravedad, estará presente la “velocidad de escape”

En el cielo del hemisferio Norte, y dentro de los límites de la Vía Láctea, hay un grupo de 20 estrellas que viajan más rápido que el resto de estrellas y que por lo visto proceden de otra galaxia.

Estas viajan tan rápido como para dejar atrás nuestra galaxia y se ha descubierto que estas estrellas vienen de una galaxia que gira en torno a la Vía Láctea conocida como: la Gran Nube de Magallanes

Las posibles explicaciones para su gran rapidez es que las estrellas hiperveloces hayan sido expulsadas del centro de la Vía Láctea por la acción del agujero negro supermasivo de su centro.

Después de hacer simulaciones por ordenador, la única explicación que encajó está relacionada con uno de los fenómenos más impresionantes del Universo: las supernovas.

Novas y supernovas son estrellas que explotan liberando en el espacio parte de su material. Durante un tiempo variable, su brillo aumenta de forma espectacular. Parece que ha nacido una estrella nueva.

Una nova es una estrella que aumenta enormemente su brillo de forma súbita y después palidece lentamente, pero puede continuar existiendo durante cierto tiempo. Una supernova también, pero la explosión destruye o altera a la estrella. Las supernovas son mucho más raras que las novas, que se observan con bastante frecuencia en las fotos.

Las novas y las supernovas aportan materiales al Universo que servirán para formar nuevas estrellas.

Así que se especula que estas estrellas tan veloces pueda tratarse de estrellas disparadas después de una explosión de una estrella supernova

En las constelaciones de Leo y del Sextante hay al menos 20 estrellas en fuga. Se trata de grandes estrellas azules (lo que quieren decir que están muy calientes), que viajan a velocidades muy altas.
“La Gran Nube de Magallanes” se trata de una pequeña galaxia, que tiene una masa de solo el 10 de la masa de la Vía Láctea, pero que gira en torno a su vecina a una gran velocidad, por eso cuando ocurre una supernova y una estrella sale disparada, suma su velocidad a la que llevaba la galaxia.

la Gran Nube de Magallanes tiene cerca de 10.000 estrellas en fuga, dispersándose por el espacio. La mitad de ellas son tan rápidas como para escapar de la gravedad de la Vía Láctea, así que se convierten en estrellas hiperveloces.
A estas estrellas les aguarda el mismo destino que a las estrellas de su clase: las grandes estrellas azules.

Las gigantes azules son extremadamente luminosas en términos absolutos -5, -6 y mucho más.
Muy masivas, que consumen rápidamente su hidrógeno y su esperanza de vida es muy corta en el rango de 10 a 100 millones de años, muy raro en la Vía Láctea.

______________________

STARS OF ANOTHER GALAXY

Stars are always in constant motion in different directions and at different angles, so it is an illusion that heaven seems static to us. If we accelerate the passage of time we could see how this movement develops, where the stars disappear, others become visible and the others change their position completely, but we do not live in the same time and only in a cosmic moment and for this reason we do not appreciate That movement.

Stars traveling fast enough can flee their environment, as galaxies have an associated escape velocity.
Wherever gravity is found, the “escape velocity”

In the Northern Hemisphere sky, and within the limits of the Milky Way, there is a group of 20 stars that travel faster than other stars and apparently come from another galaxy.
These travel as fast as to leave behind our galaxy and it has been discovered that these stars come from a galaxy that revolves around the Milky Way known as: the Great Magellanic Cloud

The possible explanations for its great speed is that the hypervelocity stars have been expelled from the center of the Milky Way by the action of the supermassive black hole of its center.

After doing computer simulations, the only explanation that fit is related to one of the most impressive phenomena in the Universe: supernovae.

New and supernovae are exploding stars releasing part of their material in space. During a variable time, its brightness increases dramatically. It looks like a new star has been born.
A nova is a star that greatly increases its brightness suddenly and then slowly pales, but can continue to exist for a certain time. A supernova too, but the explosion destroys or alters the star. Supernovae are much rarer than new ones, which are seen quite frequently in the photos.
New and supernovae bring materials to the Universe that will serve to form new stars.
So it is speculated that these stars so fast could be stars fired after an explosion of a supernova star.

In the constellations of Leo and Sextant there are at least 20 stars in flight. These are big blue stars (meaning they are very hot), which travel at very high speeds.

“The Great Magellanic Cloud” is a small galaxy, which has a mass of only 10 mass of the Milky Way, but which revolves around its neighbor at great speed, so when a supernova occurs and A star goes off, adds its speed to the one that carried the galaxy.

The Great Magellanic Cloud has about 10,000 stars in flight, scattering through space. Half of them are so fast as to escape the gravity of the Milky Way, so they become hypervelocity stars.

These stars await the same fate as the stars of their class: the great blue stars.
The blue giants are extremely luminous in absolute terms -5, -6 and much more.
Very massive, they quickly consume their hydrogen and their life expectancy is very short in the range of 10 to 100 million years, very rare in the Milky Way.