Archive | Astronomy & Universe RSS feed for this section

MAGNETARES

19 Sep

¿Qué son los magnetares? ¿Has oído hablar alguna vez de ellos?

Son extremadamente misteriosos, dentro de este cosmos fascinante ya de por sí.

Veamos como se desarrollan

Cuando una estrella muere, implosiona y se convierte en Supernova.

A veces, se forma una estrella de neutrones densa de las cenizas de esa explosión y en el proceso, algunas se convierten en magnetares con un poderoso campo magnético.

¿Pero qué son los magnetares?

Son los imanes más potentes conocidos en el universo, millones de veces más potentes que los imanes más fuertes de la Tierra.

Se originan de la agonía de las estrellas masivas, son los extraños remanentes superdensos de explosiones de supernovas.

Se trata de un tipo de estrella de neutrones alimentada con un campo magnético extremadamente fuerte.

Son antiguos núcleos de estrellas mucho mayores que en su día explotaron.

Se afirma que hay estrellas masivas que pierden peso antes de explotar como Supernovas y pierden el 90% de su masa.

Así que en vez de implosionar y convertirse en agujeros negros pasan a ser estrellas de neutrones con mucha fuerza magnética.

Los magnetares son una forma inusual y muy exótica de estrella de neutrones.

Se trata de objetos astronómicos increíblemente densos, sorprendentemente pequeños y, como su propio nombre lo sugiere, poseedores de una atracción magnética indescriptible.

¿Cuál es su esperanza de vida?

Tienen una escasa esperanza de vida y para que nazcan, se deben cumplir una serie de factores.

De modo que todos los Magnetares que vemos o bien son muy jóvenes, o bien no les queda mucho tiempo de vida, pues rozan el límite de inestabilidad gravitatoria que las consume “rápidamente” (en términos astronómicos).

Veamos sus características

Las estrellas de neutrones se caracterizan por rotar a gran velocidad y tener una masa un poco mayor que la del Sol pero concentrada en un radio de entre 10 y 20 kilómetros aproximadamente.

Su edad se determina a partir de la velocidad de rotación ya que a medida que evolucionan van girando más lentamente.

Si un viajero espacial se desviara y pasara a menos de mil kilómetros de uno de estos objetos masivos las consecuencias serían terroríficas. Su campo magnético podría desordenar los átomos de la carne humana y sus fuerzas gravitatorias destrozarían a una persona.

Las superficies de los magnetares liberan grandes cantidades de rayos gamma cuando atraviesan una etapa de ajuste repentino, conocida como un terremoto estelar (starquake), consecuencia de las enormes tensiones que tienen lugar en sus cortezas.

¿A qué distancia tendría que estar un magnetar para crear caos en el sistema solar?

Hay quien sostiene que la erupción de un magnetar situado a 10 años luz podría producir un cataclismo cósmico y destruir la capa de ozono y causar extinciones masivas.

Hay tan pocas probabilidades que es prácticamente imposible que eso suceda. No sería diferente del paso de una estrella por el sistema solar y se sabe que ninguna estrella lo ha atravesado desde su formación.

Aunque los científicos no tienen la certeza del porqué, los magnetares son una forma especialmente magnética de estrella de neutrones, razón por la que también se les conoce como magnetoestrella.

Sus campos magnéticos equivalen a aproximadamente mil billones de veces el de la Tierra.

Cuando su fuerza magnética es increíblemente potente deforma la corteza del magnetar creando fenómenos sísmicos en su superficie conocidos, como hemos comentado, por el nombre de terremotos estelares.

La corteza se quiebra por la presión y el campo magnético adquiere un estado energético más débil, y cuando ocurre, una bola de fuego sale desprendida de la estrella.

Estos terremotos causan los intensos fogonazos que detectamos. Cuando un magnetar produce uno de esos fogonazos es más brillante que todas las estrellas de la galaxia durante las pocas décimas de segundo que dura.

_____________

What are magnetars? Have you ever heard of them?
They are extremely mysterious, in this fascinating cosmos.

Let’s see how they develop

When a star dies, it implodes and becomes Supernova.
Sometimes a dense neutron star forms from the ashes of that explosion and in the process, some become magnetars with a powerful magnetic field.

But what are magnetars?

They are the most powerful magnets known in the universe, millions of times more powerful than the strongest magnets on Earth.
They originate from the agony of massive stars, they are the strange superdensive remnants of supernova explosions.
It is a type of neutron star powered with an extremely strong magnetic field.
They are ancient nuclei of much larger stars that in their day exploded.

It is claimed that there are massive stars that lose weight before they explode as Supernovae and lose 90% of their mass.
So instead of imploding and turning into black holes they become neutron stars with a lot of magnetic force.

Magnetars are an unusual and very exotic form of neutron star.
These are incredibly dense astronomical objects, surprisingly small and, as its name suggests, possessing an indescribable magnetic attraction.

What is your life expectancy?

They have a short life expectancy and to be born, a number of factors must be fulfilled.
So all the magnetars that we see are either very young, or they do not have much time to live, because they touch the limit of gravitational instability that consumes them “quickly” (in astronomical terms).

Let’s see their characteristics

Neutron stars are characterized by rotating at high speed and having a mass a little larger than the Sun but concentrated in a radius of about 10 to 20 kilometers.
Their age is determined from the speed of rotation since as they evolve, they spin more slowly.

If a space traveler were to deviate and pass within a thousand kilometers of one of these massive objects the consequences would be terrifying. Its magnetic field could disrupt the atoms of human flesh and its gravitational forces would destroy a person.

The magnetar surfaces release large amounts of gamma rays as they pass through a sudden tuning stage, known as a starquake, as a result of the enormous stresses that occur in their shells.

How far would a magnetar have to be to create chaos in the solar system?

Some argue that the eruption of a magnetar located 10 light years could produce a cosmic cataclysm and destroy the ozone layer and cause massive extinctions.
There is so little chance that it is practically impossible for that to happen. It would not be different from the passage of a star through the solar system and it is known that no star has crossed it since its formation.

Although scientists are not sure why, magnetars are a particularly magnetic form of neutron star, which is why they are also known as magnetoestrella.
Its magnetic fields are equivalent to approximately one billion trillion times that of Earth.

When its magnetic force is incredibly powerful it deforms the crust of the magnetar creating seismic phenomena on its surface known, as we have said, by the name of stellar earthquakes.

The crust breaks by the pressure and the magnetic field acquires a weaker energy state, and when it occurs, a ball of fire comes off of the star.
These earthquakes cause the intense flashes we detect. When a magnetar produces one of those flashes it is brighter than all the stars in the galaxy during the few tenths of a second that lasts.

 

 

STARS OF ANOTHER GALAXY / ESTRELLAS DE OTRA GALAXIA

11 Jul

ESTRELLAS DE OTRA GALAXIA

Las estrellas siempre están en movimiento constante en distintas direcciones y en diversos ángulos, por lo tanto es una ilusión que el cielo nos parezca estático. Si acelerásemos el paso del tiempo podríamos ver como se desarrolla este movimiento, donde las estrellas desaparecen, otras se hacen visibles y las demás cambian su posición completamente, pero no vivimos en el mismo tiempo y sólo en un instante cósmico y por esta razón no apreciamos ese movimiento.

Las estrellas que viajan con suficiente rapidez pueden huir de su entorno, ya que las galaxias tienen asociada una velocidad de escape.

Allá donde se encuentre la gravedad, estará presente la “velocidad de escape”

En el cielo del hemisferio Norte, y dentro de los límites de la Vía Láctea, hay un grupo de 20 estrellas que viajan más rápido que el resto de estrellas y que por lo visto proceden de otra galaxia.

Estas viajan tan rápido como para dejar atrás nuestra galaxia y se ha descubierto que estas estrellas vienen de una galaxia que gira en torno a la Vía Láctea conocida como: la Gran Nube de Magallanes

Las posibles explicaciones para su gran rapidez es que las estrellas hiperveloces hayan sido expulsadas del centro de la Vía Láctea por la acción del agujero negro supermasivo de su centro.

Después de hacer simulaciones por ordenador, la única explicación que encajó está relacionada con uno de los fenómenos más impresionantes del Universo: las supernovas.

Novas y supernovas son estrellas que explotan liberando en el espacio parte de su material. Durante un tiempo variable, su brillo aumenta de forma espectacular. Parece que ha nacido una estrella nueva.

Una nova es una estrella que aumenta enormemente su brillo de forma súbita y después palidece lentamente, pero puede continuar existiendo durante cierto tiempo. Una supernova también, pero la explosión destruye o altera a la estrella. Las supernovas son mucho más raras que las novas, que se observan con bastante frecuencia en las fotos.

Las novas y las supernovas aportan materiales al Universo que servirán para formar nuevas estrellas.

Así que se especula que estas estrellas tan veloces pueda tratarse de estrellas disparadas después de una explosión de una estrella supernova

En las constelaciones de Leo y del Sextante hay al menos 20 estrellas en fuga. Se trata de grandes estrellas azules (lo que quieren decir que están muy calientes), que viajan a velocidades muy altas.
“La Gran Nube de Magallanes” se trata de una pequeña galaxia, que tiene una masa de solo el 10 de la masa de la Vía Láctea, pero que gira en torno a su vecina a una gran velocidad, por eso cuando ocurre una supernova y una estrella sale disparada, suma su velocidad a la que llevaba la galaxia.

la Gran Nube de Magallanes tiene cerca de 10.000 estrellas en fuga, dispersándose por el espacio. La mitad de ellas son tan rápidas como para escapar de la gravedad de la Vía Láctea, así que se convierten en estrellas hiperveloces.
A estas estrellas les aguarda el mismo destino que a las estrellas de su clase: las grandes estrellas azules.

Las gigantes azules son extremadamente luminosas en términos absolutos -5, -6 y mucho más.
Muy masivas, que consumen rápidamente su hidrógeno y su esperanza de vida es muy corta en el rango de 10 a 100 millones de años, muy raro en la Vía Láctea.

______________________

STARS OF ANOTHER GALAXY

Stars are always in constant motion in different directions and at different angles, so it is an illusion that heaven seems static to us. If we accelerate the passage of time we could see how this movement develops, where the stars disappear, others become visible and the others change their position completely, but we do not live in the same time and only in a cosmic moment and for this reason we do not appreciate That movement.

Stars traveling fast enough can flee their environment, as galaxies have an associated escape velocity.
Wherever gravity is found, the “escape velocity”

In the Northern Hemisphere sky, and within the limits of the Milky Way, there is a group of 20 stars that travel faster than other stars and apparently come from another galaxy.
These travel as fast as to leave behind our galaxy and it has been discovered that these stars come from a galaxy that revolves around the Milky Way known as: the Great Magellanic Cloud

The possible explanations for its great speed is that the hypervelocity stars have been expelled from the center of the Milky Way by the action of the supermassive black hole of its center.

After doing computer simulations, the only explanation that fit is related to one of the most impressive phenomena in the Universe: supernovae.

New and supernovae are exploding stars releasing part of their material in space. During a variable time, its brightness increases dramatically. It looks like a new star has been born.
A nova is a star that greatly increases its brightness suddenly and then slowly pales, but can continue to exist for a certain time. A supernova too, but the explosion destroys or alters the star. Supernovae are much rarer than new ones, which are seen quite frequently in the photos.
New and supernovae bring materials to the Universe that will serve to form new stars.
So it is speculated that these stars so fast could be stars fired after an explosion of a supernova star.

In the constellations of Leo and Sextant there are at least 20 stars in flight. These are big blue stars (meaning they are very hot), which travel at very high speeds.

“The Great Magellanic Cloud” is a small galaxy, which has a mass of only 10 mass of the Milky Way, but which revolves around its neighbor at great speed, so when a supernova occurs and A star goes off, adds its speed to the one that carried the galaxy.

The Great Magellanic Cloud has about 10,000 stars in flight, scattering through space. Half of them are so fast as to escape the gravity of the Milky Way, so they become hypervelocity stars.

These stars await the same fate as the stars of their class: the great blue stars.
The blue giants are extremely luminous in absolute terms -5, -6 and much more.
Very massive, they quickly consume their hydrogen and their life expectancy is very short in the range of 10 to 100 million years, very rare in the Milky Way.

AURORA BOREAL

3 Jul

 

La Auroral Boreal, es uno de los más grandiosos fenómenos naturales, usualmente aparece en el cielo nocturno entre finales de Agosto y Abril.

Como otros tantos fenómenos naturales la Aurora Boreal aparece referida en numerosos mitos y leyendas. Alguna gente dice que las Auroras Boreales son espíritus moviéndose a través del cielo o que son reflejos de los escudos de las famosas guerreras Valkirias. Otra leyenda dice que son las chispas que se generan cuando la cola de un zorro golpea la cima de una colina.

 

Las luces del norte o aurora boreal han fascinado a esquimales, lapones y demás tribus árticas desde los tiempos más remotos, incluso los griegos ya la conocían…

 

En el folklore abundan las explicaciones sobre el origen de estas fascinantes luces del norte. En finés se llaman “revontulet”, que significa “fuegos del zorro”. El nombre se deriva de una antigua leyenda sobre el zorro del ártico que decía que los rabos de los zorros que corrían por los montes lapones, se golpeaban contra los montones de nieve y las chispas que salían de tales golpes se reflejaban en el cielo. En otras culturas los fuegos del zorro designaban al brillo resplandeciente emitido por algunos tipos de hongos que crecen en la madera podrida.

Los esquimales, los lapones, los habitantes de Groenlandia, e incluso las tribus del noreste de la India estaban familiarizados con esta luz misteriosa del cielo. Sus leyendas tomaban muchas formas y estaban asociadas con sus ideas de la vida en el otro mundo. Según una leyenda esquimal, la aurora boreal era un sendero estrecho, sinuoso y peligroso que conducía a las regiones celestiales y su luz se debía a la llegada de los nuevos espíritus.

 

En la actualidad los científicos saben que la Aurora Boreal es causada por los vientos solares al chocar contra la atmosfera superior de la tierra que está a 100 Km de altura. Los campos magnéticos de la tierra dirigen el flujo de los electrones hacia la magnetosfera sobre los polos Norte y Sur. Esta es la razón por la cual las mejores localizaciones para ver las Auroras están en el Círculo Ártico. Estadísticamente el mejor momento para ver las Auroras es justo antes de la medianoche.

La aurora del hemisferio norte fue nombrada aurora boreal (luces del norte) por el científico francés Pierre Gassendi en 1621, quien fue el primero en hacer observaciones aurorales sistemáticas. La aurora del sur fue nombrada aurora austral (luces del sur) por el capitán James Cook en 1773, cuando la observó por primera vez en el Océano Índico. Ya los filósofos griegos consideraban a la aurora del norte como un fenómeno natural, y la asociaban con el reflejo de la luz en los hielos polares.

 

El sol desprende partículas cargadas de mucha energía, iones, principalmente protones, y electrones, los cuales viajan por el espacio a velocidades entre 320 y 704 kilómetros por segundo, es decir, necesitan tan solo entre 130 y 60 horas en llegar a la Tierra. Al conjunto de partículas que vienen del Sol se les conoce como viento solar.

Cuando éste interactua con los bordes del campo magnético terrestre, que está originado por el movimiento del núcleo terrestre en estado semilíquido con abundante hierro y animado por la rotación de nuestro planeta, algunas de las partículas quedan atrapadas por él y siguen el curso de las líneas de fuerza magnética en dirección a la ionosfera.

La ionosfera es la parte de la atmósfera terrestre que se extiende hasta unos 60 o 100 kilómetros desde la superficie de la tierra. Cuando las mencionadas partículas chocan con los gases en la ionosfera, empiezan a brillar, produciendo el espectáculo que conocemos como aurora boreal y austral. La variedad de colores rojo, verde, azul y violeta que aparecen en el cielo se deben a los diferentes gases que componen la ionosfera.

Para los lugareños del Norte de Noruega las auroras boreales son parte de su vida. En esta zona la aurora ha sido y es todavía una rica fuente de inspiración para el arte, la mitología y las leyendas. Para otros como el célebre científico Neil deGrasse Tyson, el fenómeno de las auroras boreales es un ejemplo más de cómo de hermosa puede ser la ciencia. “Es una cosa curiosa sobre el universo”, asegura, “detrás de las más hermosas vistas se encuentra uno de los mayores problemas de la física”.

 

Cuando el viento solar choca con el campo magnético de la Tierra, éste se estira como si de una banda elástica se tratase, y acumula dentro toda la energía. Llega un momento en el que las líneas del campo magnético se reconectan y liberan de golpe toda esta energía, lo que propulsa a los electrones de vuelta a la Tierra. Cuando estas partículas tan aceleradas chocan con la parte superior de la atmósfera se genera el plasma llamado aurora, causante del despliegue de brillos y colores que se puede observar en los polos en determinadas épocas del año.

Lo que desconcertaba a los científicos era el gran número de electrones generados en estos eventos, ya que, según la teoría, sería imposible sostener un campo eléctrico en las líneas del campo magnético. Sin embargo, la simulación del MIT, cuyos resultados se publican en Nature Physics, ha demostrado que es este campo lo que precisamente se necesita para acelerar los electrones. Además, según los datos del simulador, la región activa de la magnetosfera, que es el lugar donde se produce la liberación de electrones, es unas mil veces más grande de lo que se pensaba. Este volumen es suficiente para explicar la enorme cantidad de electrones con gran aceleración que han sido detectados en las misiones espaciales.

 

Las Auroras Boreales suelen ocurrir también en verano pero el Sol de la Medianoche y la luminosidad del cielo no nos permiten verlas. El Hotel Kakslauttanen ofrece una buena oportunidad de ver las Auroras Boreales, ya que está situado a 250 Km. sobre el Círculo Ártico y hay muy poca contaminación lumínica. Una de las mejores maneras de ver una Aurora Boreal es pasando la noche en un Iglú de Cristal. La Aurora Boreal es visible desde finales de Agosto hasta Abril.

_______________

 

Auroral Boreal, is one of the most magnificent natural phenomena, usually appears in the night sky between the end of August and April.
Like so many natural phenomena Aurora Boreal appears referred in numerous myths and legends. Some people say that the Northern Lights are spirits moving across the sky or that they are reflections of the shields of the famous Valkyrie warriors. Another legend says that it is the sparks that are generated when the tail of a fox hits the top of a hill.

The northern or aurora boreal lights have fascinated Eskimos, Lapps and other Arctic tribes since the earliest times, even the Greeks knew it …

In the folklore abound the explanations on the origin of these fascinating lights of the north. In Finnish they are called “revontulet”, which means “fox fires”. The name is derived from an ancient legend about the fox of the Arctic that said the tails of the foxes that ran through the mountains of the Lapps, beat against the piles of snow and the sparks that came out of such blows were reflected in the sky. In other cultures fox fires designated the glowing glow emitted by some types of fungi growing on rotten wood.

The Eskimos, the Lapps, the inhabitants of Greenland, and even the tribes of northeastern India were familiar with this mysterious light from the sky. His legends took many forms and were associated with his ideas of life in the other world. According to an Eskimo legend, the aurora borealis was a narrow, sinuous and dangerous path leading to the celestial regions and its light was due to the arrival of the new spirits.

Scientists now know that the Aurora Borealis is caused by solar winds by colliding with the upper atmosphere of the earth that is 100 km high. Earth’s magnetic fields direct the flow of electrons towards the magnetosphere on the North and South poles. This is why the best locations to see the Auroras are in the Arctic Circle. Statistically the best time to see the Auroras is just before midnight.

 

The aurora of the northern hemisphere was named aurora boreal (northern lights) by the French scientist Pierre Gassendi in 1621, who was the first to make systematic auroral observations. The southern aurora was named aurora austral (southern lights) by Captain James Cook in 1773, when he first observed it in the Indian Ocean. Already the Greek philosophers regarded the aurora of the north as a natural phenomenon, and associated it with the reflection of light in the polar ice.

The sun releases particles charged with a lot of energy, ions, mainly protons, and electrons, which travel through space at speeds between 320 and 704 kilometers per second, that is, they need only between 130 and 60 hours to reach Earth. The set of particles that come from the Sun are known as solar wind.

When it interacts with the edges of the Earth’s magnetic field, which is caused by the movement of the Earth’s nucleus in a semi-liquid state with abundant iron and animated by the rotation of our planet, some of the particles are trapped by it and follow the course of the lines Of magnetic force in the direction of the ionosphere.
The ionosphere is the part of Earth’s atmosphere that extends up to about 60 or 100 kilometers from the surface of the earth. When the aforementioned particles collide with the gases in the ionosphere, they begin to glow, producing the spectacle known as aurora boreal and austral. The variety of colors, red, green, blue and violet appearing in the sky are due to the different gases that make up the ionosphere.

For northern Norwegian villagers the northern lights are part of their life. In this area the aurora has been and still is a rich source of inspiration for art, mythology and legends. For others like the celebrated scientist Neil deGrasse Tyson, the aurora borealis phenomenon is yet another example of how beautiful science can be. “It’s a curious thing about the universe,” he says, “behind the most beautiful views is one of the biggest problems in physics.”

When the solar wind collides with the Earth’s magnetic field, it stretches as if it were an elastic band, and accumulates all the energy inside. There comes a time when the lines of the magnetic field reconnect and suddenly release all this energy, which propels the electrons back to Earth. When these accelerated particles collide with the upper part of the atmosphere, the plasma called aurora is generated, causing the display of brightness and colors that can be observed at the poles at certain times of the year.

 

What disconcerted the scientists was the large number of electrons generated in these events, since, according to theory, it would be impossible to sustain a Electric field in the lines of the magnetic field. However, the MIT simulation, the results of which are published in Nature Physics, has shown that this field is precisely what is needed to accelerate electrons.

In addition, according to the simulator data, the active region of the magnetosphere, which is the place where the release of electrons occurs, is a thousand times larger than previously thought. This volume is sufficient to explain the enormous amount of electrons with great acceleration that have been detected in the space missions.

The Northern Lights usually occur also in summer but the Sun of Midnight and the luminosity of the sky do not allow us to see them. The Hotel Kakslauttanen offers a good opportunity to see the Northern Lights, as it is located 250 km above the Arctic Circle and there is very little light pollution. One of the best ways to see a Aurora Borealis is to spend the night in a Crystal Igloo. The Aurora Borealis is visible from the end of August until April.

 

Image

Cometa Ison

24 Apr

Cometa Ison

http://www.abc.es/ciencia/20130424/abci-hubble-fotografia-ison-cometa-201304241102.html

Image

Código Genético

4 Apr

Código Genético

http://actualidad.rt.com/actualidad/view/90762-codigo-genetico-mensajes-extraterrestres

Image

Marte pudo haber albergado vida

12 Mar

Marte pudo haber albergado vida

http://cnnespanol.cnn.com/2013/03/12/marte-pudo-haber-albergado-vida-alguna-vez-segun-la-nasa/?on.cnn=1

Image

Nuevos indicios de origen extraterrestre

6 Mar

Nuevos indicios de origen extraterrestre

http://www.abc.es/ciencia/20130306/abci-nuevos-indicios-origen-extraterrestre-201303061111.html